The True Meaning of $E = MC^2$

The energy of the photon is divided into four separate but equal kinetic energies. The linear energy of its magnetic coil mass, the linear energy of the electric coil mass, the rotational energy of the magnetic coil mass, and the rotational energy of the electric coil mass. The two linear coil energies are Doppler shifted by the relative motion of the observer but the two opposite rotational energies of the electric/magnetic coils are absolute and are measured to be the same in all moving frames.

The two separate but equal rest mass rotational energies of the primary and secondary coils of the electron and proton are absolute and measured to be the same by all moving observers. When electrons and protons are accelerated, their momentum and energy is measured as an increase in mass but this “relativistic mass and energy” is separate from the particles’ rest mass/energy.
The Energy of Moving Mass

$E = mc^2$ has several physical meanings. It is the energy of the photons produced by the annihilation of a positron and electron. It is the energy inherent in the Lorentz transformation mass increase $m' = M\sqrt{1-v^2/c^2}$ of an accelerated observer. It is the combined kinetic and rotational energy of a photon’s mass: $e = mc^2/2 + mC^2/2 = mcC$. It is the rotational kinetic energy $e = mC^2/2 + mC^2/2 = mCC$ contained in the atom from the opposite spins at C of rotating mass within its circlon shaped structures. These definitions of $e = mc^2$ are principles of experimental measurement and are completely compatible with the equations of Newtonian dynamics. These principles of measurement are the same in every theory that uses them and are not unique to relativity theories and quantum mechanics. Although these equations are used in the standard model’s mathematical structure, they were developed as a part of Newtonian mechanics prior to their use in standard model theories.

The Massless Photon

Einstein’s non-Newtonian metaphysical assumption of $e = mc^2$ is that the mass of the entire structure of matter can be transformed into the pure energy of massless photons. This idea of a pure energy photon is metaphysical and is not directly supported by any physical measurements.

When a body of mass is accelerated, it gains kinetic energy $e = mv^2/2$. This energy is equal in quantity to the Lorentz transformation mass increase $m' = M\sqrt{1-v^2/c^2}$ of the body’s increased absolute velocity. $e = mv^2/2$ and $m = 2e/v^2$ are metaphysical equations because energy and mass are on opposite sides. At zero energy and zero velocity, mass equals one but as the value for energy increases the value of mass also increases to 1.0+. The physical form of this equations is $\sqrt{2e/m} = v$.

Relativistic Momentum

Relativity theory claims that a photon’s “relativistic momentum” $p = mc$ is different in character and separate from Newtonian momentum $p = mv$. The problem with this idea is that the photon’s equivalent relativistic momentum is always measured as Newtonian momentum. When an atom emits a photon with a momentum of $p = mc$, it recoils with an equal quantity of Newtonian momentum $p = mv$. When this photon is absorbed by a second atom, this atom’s recoil is measured as Newtonian momentum and is conserved with the recoil momentum of the first atom. How is it possible to believe in the conservation of momentum and still consider the photon to be massless?

When an atom emits a photon, its mass is decreased by the photon’s momentum $m = p/c$. When the atom absorbs a photon, its mass/energy are increased by the photon’s energy/mass. All experimental measurements of photon energy and momentum can only be quantified in terms of Newtonian momentum $p = mv$ and kinetic energy $e = mv^2/2$. What possible experimental measurements can be made in which the results require the photon to be massless? The only way an experiment can cause a photon to be measured as massless is to use non-Newtonian equations derived from the standard model assumption of a massless photon. You can’t measure the photon as massless.
when you begin with the assumption that it is massless. Measurements can produce assumptions, but assumptions do not produce measurements.

Non-Relativistic Newtonian Measurements

You cannot measure the mass of the photon using the mathematical structure of Special Relativity theory. When we measure a photon we must begin with Newton’s laws of the motion of mass, space, time \(p = ms/t \), and force \(f = ma \). To make these laws absolute to the speed of light, the Lorentz transformation \(m' = M\sqrt{1-v^2/c^2} \) must be included. All of our instruments for measuring momentum and energy work according to these laws. The values that we get from our measuring instruments are always in terms of the Newtonian parameters of momentum and force. At the most basic level of measurement, the only three values we can determine from Newtonian dynamics are \(F = ma \), \(m = e/cC \) and \(\lambda = h/mc \).

Photon mass is not a theory. Mass is a conclusion from the measurement of momentum. You can’t measure mass. You can only measure change in momentum. When we measure each of a photon’s parameters, we need not assume photon mass because we are measuring its momentum. You only need a metaphysical theory like Special Relativity to explain how photon mass can be measured when it does not exist.

Photon Spin

Both Special Relativity and quantum mechanics identify the photon as a spin one particle. That is as far as these theories go with a physical description before launching into non-intuitive equations for continuum fields. This is because, without mass, they cannot identity just what it is that is spinning. They believe that the photon has neither mass nor a structure that is analogous to the mass and structure of matter. They believe that this spin occurs in an imagined non-Euclidian dimension. In quantum field mechanics, the photon’s unit of spin one has energy but it cannot be divided into the Newtonian parameters of mass, velocity, and radius. This energy is believed to be the etherial motion of a field rather than the motion of a circlon shaped mass structure.

The Rest Mass and Energy of Matter

The photon is a matter/antimatter particle that got equal quantities of negative electric mass and positive magnetic mass from an atom’s electron and proton respectively. Relativists believe that when an atom emits a photon, part of that atom’s mass is completely converted into a formless point of “pure” energy with no mass or shape. This would require that when a photon is emitted from matter it is no longer matter or mass and now exists as part of a spacetime continuum aether. When an atom absorbs the “relativistic mass and energy” of a photon from the aether, it again becomes the mass/energy of matter.

By contrast, if you allow the photon to have mass, you don’t need an otherwise incomprehensible aether continuum to carry its momentum and energy across the universe. The photon just moves through the void with the pure Newtonian mechanics of inertial motion. Its motion and energy are no different in principle from the momentum and energy of a spinning rifle bullet. Also, a photon with mass gives substance to the
idea of wave/particle duality. It is really the duality of energy/mass. The physical mass coil structures of photons contain moving waves of energy. The photon is a mechanical entity that does not need quantum fields to interact with an atom.

Doppler Shift of Photon Energy

A photon has the absolute parameter of masslength $m\lambda$ as it travels through space at c. This relationship is called Planck’s constant $h = m\lambda c$. (Planck’s constant simply quantifies the mass, space, and time of photons.) When a photon is measured at an observer’s relative velocity of $c+/-v$, it is Doppler shifted to a different momentum $p = mv$, wavelength $\lambda = h/mv+/-c$, and energy $e = mv^2/2 + mc^2/2$. The Doppler shifts of momentum and wavelength are directly proportional to the observer’s velocity but Doppler shifts of linear energy are proportional to the square of that velocity. The angular momentum $I = m\lambda c/2\pi$ is the same for all photons and is never Doppler shifted. The photon’s rotational kinetic energy is also the same in all reference frames and cannot be Doppler shifted by an observer’s motion. It is only the photon’s momentum $p = mc$ and linear kinetic energy $e = mv^2/2$ that is Doppler shifted. A photon's rotational kinetic energy cannot be Doppler shifted.

For example, when a photon is measured at $1/2c$, its momentum and wavelength are Doppler shifted to $1/2$ and 2 depending on direction. When the photon’s shift in energy is measured, its rotational energy $e = mc^2/2$ stays the same and the kinetic energy $e = mv^2/2$ of its velocity is either $1/4$ or 4. Photon energy at $1/2c$ is Doppler shifted to either $(1 1/8 + 1/2 = 1 5/8)$ or $(1/8 + 1/2 = 5/8)$. Without rotating mass, relativity’s photon energy $e = mc^2$ would be Doppler shifted to either 2.25 or $1/4$.

The photon’s red and blue energy Doppler shifts are just the mechanics of linear motion and the spin of mass. The dynamics of a photon’s momentum and energy have three components that must be calculated and measured separately. The energy of a photon’s spin is constant and is the same in all frames, the linear momentum is directly proportional to the photon’s Doppler velocity and its linear kinetic energy is proportional to $1/2$ the square of the observer’s motion.

Photon Energy and Planck’s Constant

Special Relativity’s theory of a massless photon is circular in nature. It first adopts the metaphysical assumption for a massless photon $e = mc^2$ and then tries to confirm this quantity of energy $e = hf$ with Planck’s constant which is just another metaphysical assumption for a massless photon. If you do not assume a massless photon then the value of the constant is $h = m\lambda c$. Planck’s constant is equal to the mass times the wavelength of any photon times the speed of light and photon energy $e = hf = m\lambda c^2/\lambda = mc^2$. The argument for a massless photon is based on unmeasured equations rather than experimental parameters. You cannot measure the mass of the photon with a theory that begins with the assumption that the photon is massless.

The Newtonian Photon Mass Principle

The only experimental difference between Newtonian mechanics and Special Relativity’s dynamics is in their mathematical relationships between mass and energy. In Newtonian mechanics, kinetic energy and mass maintain equal quantities within each photon and within the motions of each body of matter.
In relativity theory, the kinetic energy of a body’s motion is coupled to what is called “relativistic mass” and the photon’s “relativistic energy” has no actual mass. Even without mass, the photon is calculated to interact with matter in the same measurable way that it would, if it did have Newtonian mass. In the Newtonian mass principle, energy and mass are always constant and conserved in all interactions of matter and photons. In relativity theory, mass and energy are sometimes conserved but at other times they are allowed to come and go, and transform into one another. They can even appear from or disappear into the zero point energy continuum of expanding spacetime. For example, in Big Bang theory, the energy and momentum of CBR photons are constantly disappearing into the imagined parameter of an expanding spacetime continuum.

The two separate but equal rest mass rotational energies of the primary and secondary coils of the electron and proton are absolute and measured to be the same by all moving observers. When electrons and protons are accelerated, their momentum and energy is measured as an increase in mass but this “relativistic” mass and energy is separate from the particles’ rest mass/energy.

Experimentally, most equations defining a measurement show equal results for both the Newtonian principle of mass, space, time, gravity and the relativity assumption of spacetime fields. Whether or not someone believes that the photon has mass boils down to their choice in equations. Most of the so called tests of relativity’s massless photon can equally confirm the Newtonian mass principle simply by rearranging the photon energy equations of \(e = mc^2 \) and \(h = e\lambda/c \) to the Newtonian photon equation of \(cC = e/m \). In Newtonian physics, the equations for a photon’s parameters requires that photon energy and mass are always equal in quantity and must not be placed on opposite sides of the equation except for the purpose of calculating their individual values.

It would seem that all measurements of electrodynamics would be calculated the same with both relativistic and Newtonian equations. However, the Doppler shift of photon energy provides an experimental test that will produce different results for photons with the Newtonian principle of mass/energy than with relativity theory’s massless pure energy photons.

A photon’s relativistic massless energy \(e = mc^2 \) is a single homogeneous unit, whereas a photon’s Newtonian energy \(e = mc^2/2 + mC^2/2 = mcC \) is divided into four equal quantities of relative and absolute kinetic energies. The photon’s kinetic energy from the linear motion of its mass is proportional to the relative velocity of the observer, but the rotational energy of the photon’s spinning mass remains constant in all observer frames. Both a photon’s rotational kinetic energy and its angular momentum are constant and are not shifted by the Doppler effect.

The Definitive Test of Relativity’s Massless Photon

It is claimed by many that Special Relativity has “passed every experimental test ever conceived”. This is only true if you begin with equations requiring the assumption of a massless photon. The only real difference between Newtonian mechanics and the dynamics of relativity is the assumption of the massless photon. Most of the mathematical calculations for “every experimental test” come out the same whether
you are quantifying actual Newtonian mass, space, time, and gravity or the relativistic momentum and energy of a spacetime continuum.

The Doppler effect provides the ability to experimentally test Special Relativity’s theory of the massless photon against the opposite principle of Newtonian photon mass. The “pure” photon energy $e = mc^2$ of relativity theory is Doppler shifted more than the combined kinetic energies $e = mc^2/2 + mC^2/2 = mc^2$ of the photon mass principle.

Careful measurements of photons will show that the Doppler shifts in a photon’s momentum are not proportional to shifts in its energy. This is because momentum is shifted directly by velocity, and energy is shifted by one half of the square of velocity. Careful and precise measurement of a photon’s relationship between Doppler shifted momentum and energy should be able to falsify either relativity theory or the Newtonian photon mass principle. For example, relativity’s energy red shift for $1/2 \ c$ would be $1/4$ while the Newtonian red energy shift would only be $5/8$.

This Doppler shift discrepancy between momentum and energy can only be measured by rapidly moving observers. This is a relativity large effect that could possibly be measured in the dipole anisotropy of the CBR. Such a test would provide the opportunity to measure uniform photons from all directions that are undergoing modest (375 km/s) red and blue Doppler shifts in their wavelengths, momentum, and energy.

A Definitive Experimental Measurement of Photon Mass

The primary metaphysical assumption of the standard model theories of physics and the Big Bang is the massless photon and $e = mc^2$. This idea is metaphysical because it is only half of an equation. The other metaphysical half is $m = e/c^2$. In the physical form of this equation $e/m = c^2$, mass and energy are an inseparable constant. Rather than two assumptions of measurement, it becomes a principle of measurement. Mass and energy are not separate entities but a single unit. They cannot be physically separated except in the imagination of a theoretical physicist. This composite equation is the proper equation for the energy of matter but the proper equation for the photon is $e/m = cC$, $e = mc^2/2 + mC^2/2 = mcC$. Photons of all wavelengths have a fixed quantity of masslength $= ml$, $h = mlC$ and all have the same quantity of angular momentum $lw = mlC/2\pi$.

This experimental test will decisively measure the mass of a photon as well as its momentum, energy and wavelength. It will show a different value between the standard model’s idea of the “pure energy” massless photon and the Newtonian measurements of photon momentum, and energy that determines photon mass.
The Definitive Measurement of the Absolute Motion of Both Inertial Mass and Photon Mass

This experimental measurement could easily be performed in a small laboratory. All that would be required is four lasers and sensors capable of accurately measuring photon wavelength and energy.

Transverse Doppler Shift

\[\lambda_{\text{motion}} = \frac{\lambda_{\text{rest}}}{\sqrt{1 - v^2/c^2}} \]

\[\sqrt{1 - v^2/c^2} @ 375 \text{ km/s} = 0.999999217 \]

Doppler shift of Momentum @ 375 km/s

\[p = \frac{c - v}{\sqrt{1 - v^2/c^2}} = 0.998749916 \text{ red} \]

\[p = \frac{c + v}{\sqrt{1 - v^2/c^2}} = 1.00125165 \text{ blue} \]

\[E = mc^2/2 + mv^2/2 \]

Newtonian Energy Doppler shift @ 375 km/s

\[N_{E} = mc^2/2 + mv^2/2 = 0.998749135 \text{ red} \]

\[c^2/2 + v^2/2 = 0.997501395 \text{ blue} \]

Relativity Energy Doppler shift @ 375 km/s

\[R_{E} = mc^2/2 + mv^2/2 = 1.00125086 \text{ blue} \]

\[c^2/2 + v^2/2 = 1.002503544 \text{ red} \]

Relativity's Energy Doppler shift @ 375 km/s

\[\sqrt{1 - v^2/c^2} = 0.997499834 \text{ red} \]

\[\sqrt{1 - v^2/c^2} = 1.00250251 \text{ blue} \]

This experimental measurement could easily be preformed in a small laboratory. All that would be required is four lasers and sensors capable of accurately measuring photon wavelength and energy.

Dipole Anisotropy of the Cosmic Blackbody Radiation

\[\lambda = 0.998749916 \]

\[p = 0.998749916 \]

\[e = 0.998749916 \]

375 km/s

\[\lambda = 1 \]

\[p = 1 \]

\[e = 1 \]

Earth has an Absolute Motion of 375 km/s Relative to the Photon Rest of the 2.7˚K CBR.

This motion can be detected independently of the CBR by measuring the difference in Doppler shifts between a photon’s energy and its wavelength and momentum. This measurement can also be used to show the photon has a mass structure and that it is not just “pure energy”.